skip to main content


Search for: All records

Creators/Authors contains: "Mensing, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Understanding pre-1850s fire history and its effect on forest structure can provide insights useful for fire managers in developing plans to moderate fire hazards in the face of forecasted climate change. While climate clearly plays a substantial role in California wildfires, traditional use of fire by Indigenous people also affected fire history and forest structure in the Sierra Nevada. Disentangling the effects of human versus climatically-induced fire on Sierran forests from paleoecological records has historically proved challenging, but here we use pollen-based forest structure reconstructions and comparative paleoclimatic-vegetation response modeling to identify periods of human impact over the last 1300 years at Markwood Meadow, Sierra National Forest.

    Results

    We find strong evidence for anthropogenic fires at Markwood Meadow ca. 1550 – 1750 C.E., contemporaneous with archaeological evidence for fundamental shifts in Indigenous lifeways. When we compare our findings to five other paleoecological sites in the central and southern Sierra Nevada, we find evidence for contemporaneous anthropogenic effects on forest structure across a broad swath of cismontane central California. This is significant because it implies that late 19th and early twentieth century forest structure – the structure that land managers most often seek to emulate – was in part the result anthropogenic fire and precolonial resource management.

    Conclusion

    We consequently suggest that modern management strategies consider (1) further incorporating traditional ecological knowledge fire practices in consultation with local tribal groups, and (2) using pollen-based reconstructions to track how forest composition compares to pre-1850 C.E. conditions rather than the novel forest states encountered in the late 20th and early twenty-first centuries. These strategies could help mitigate the effects of forecast climate change and associated megafires on forests and on socio-ecological systems in a more comprehensive manner.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    In the context of global decline in old‐growth forest, historical ecology is a valuable tool to derive insights into vegetation legacies and dynamics and develop new conservation and restoration strategies. In this cross‐disciplinary study, we integrate palynology (Lago del Pesce record), history, dendrochronology, and historical and contemporary land cover maps to assess drivers of vegetation change over the last millennium in a Mediterranean mountain forest (Pollino National Park, southern Italy) and discuss implications in conservation ecology. The study site hosts a remnant beech–fir (Fagus sylvaticaAbies alba) mixed forest, a priority habitat for biodiversity conservation in Europe. In the 10th century, the pollen record showed an open environment that was quickly colonized by silver fir when sociopolitical instabilities reduced anthropogenic pressures in mountain forests. The highest forest cover and biomass was reached between the 14th and the 17th centuries following land abandonment due to recurring plague pandemics. This rewilding process is also reflected in the recruitment history of Bosnian pine (Pinus heldreichii) in the subalpine elevation belt. Our results show that human impacts have been one of the main drivers of silver fir population contraction in the last centuries in the Mediterranean, and that the removal of direct human pressure led to ecosystem renovation. Since 1910, the Rubbio State Forest has locally protected and restored the mixed beech–fir forest. The institutions in 1972 for the Rubbio Natural Reserve and in 1993 for Pollino National Park have guaranteed the survival of the silver fir population, demonstrating the effectiveness of targeted conservation and restoration policies despite a warming climate. Monitoring silver fir populations can measure the effectiveness of conservation measures. In the last decades, the abandonment of rural environments (rewilding) along the mountains of southern Italy has reduced the pressure on ecosystems, thus boosting forest expansion. However, after four decades of natural regeneration and increasing biomass, pollen influx and forest composition are still far from the natural attributes of the medieval forest ecosystem. We conclude that long‐term forest planning encouraging limited direct human disturbance will lead toward rewilding and renovation of carbon‐rich and highly biodiverse Mediterranean old‐growth forests, which will be more resistant and resilient to future climate change.

     
    more » « less